Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 221: 1-12, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38215931

RESUMO

Gene silencing through RNA interference (RNAi) is a promising therapeutic approach for a wide range of disorders, including cancer. Non-viral gene therapy, using specific siRNAs against BCR-ABL1, can be a supportive or alternative measure to traditional chronic myeloid leukemia (CML) tyrosine kinase inhibitor (TKIs) therapies, given the prevalence of clinical TKI resistance. The main challenge for such approaches remains the development of the effective delivery system for siRNA tailored to the specific disease model. The purpose of this study was to examine and compare the efficiency of endosomolytic cell penetrating peptide (CPP) EB1 and PEG2000-decorated cationic liposomes composed of polycationic lipid 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2Ð¥3) and helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) for anti-bcr-abl siRNA delivery into the K562 human CML cell line. We show that both EB1 and 2Ð¥3-DOPE-DSPE-PEG2000 (0.62 % mol.) liposomes effectively deliver siRNA into K562 cells by endocytic mechanisms, and the use of liposomes leads to more effective inhibition of expression of the targeted gene (BCR-ABL1) and cancer cell proliferation. Taken together, these findings suggest that PEG-decorated cationic liposomes mediated siRNA delivery allows an effective antisense suppression of certain oncogenes, and represents a promising new class of therapies for CML.

2.
Biochim Biophys Acta Gen Subj ; 1865(12): 129978, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34487824

RESUMO

BACKGROUND: Therapeutic effects of PDT depend on many factors, including the amount of singlet oxygen, localization of photosensitizer and irradiation protocol. The present study was aimed to compare the cytotoxic mechanisms of PDT under continuous-wave (CW) and pulsed irradiation using a tumor spheroid model and a genetically encoded photosensitizer miniSOG. METHODS: 1O2 detection in miniSOG and flavin mononucleotide (FMN) solutions was performed. Photobleaching of miniSOG in solution and in HeLa tumor spheroids was analyzed. Tumor spheroid morphology and growth and the cell death mechanisms after PDT in CW and pulsed modes were assessed. RESULTS: We found a more rapid 1O2 generation and a higher photobleaching rate in miniSOG solution upon irradiation in pulsed mode compared to CW mode. Photobleaching of miniSOG in tumor spheroids was also higher after irradiation in the pulsed mode. PDT of spheroids in CW mode resulted in a moderate expansion of the necrotic core of tumor spheroids and a slight inhibition of spheroid growth. The pulsed mode was more effective in induction of cell death, including apoptosis, and suppression of spheroid growth. CONCLUSIONS: Comparison of CW and pulsed irradiation modes in PDT with miniSOG showed more pronounced cytotoxic effects of the pulsed mode. Our results suggest that the pulsed irradiation regimen enables enhanced 1O2 production by photosensitizer and stimulates apoptosis. GENERAL SIGNIFICANCE: Our results provide more insights into the cellular mechanisms of anti-cancer PDT and open the way to improvement of light irradiation protocols.


Assuntos
Triazenos , Morte Celular , Fármacos Fotossensibilizantes
3.
Cancer Chemother Pharmacol ; 88(5): 867-878, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34351468

RESUMO

PURPOSE: Metronomic chemotherapy (MC) is a promising approach where, in contrast to the conventional maximal tolerated dose (MTD) strategy, regular fractionated doses of the drug are used. This approach has proven its efficacy, although drug dosing and scheduling are often chosen empirically. Pharmacokinetic/pharmacodynamic (PK/PD) models provide a way to choose optimal protocols with computational methods. Existing models are usually too complicated and are valid for only a subset of drug schedules. To address this issue, we propose herein a simple model that can describe MC and MTD regimens simultaneously. METHODS: The minimal model comprises tumor suppression due to antiangiogenic drug effect together with a cell-kill term, responsible for its cytotoxicity. The model was tested on data obtained on tumor-bearing mice treated with gemcitabine in ether MTD, MC, or combined (MTD + MC) regimens. RESULTS: We conducted a number of tests in which data were divided in various ways into training and validation sets. The model successfully described different trends in the MTD and MC regimens. With parameters obtained by fitting the model to MTD data, the simulations correctly predicted trends in both the MC and combined therapy groups. CONCLUSION: Our results demonstrate that the proposed model presents a minimal yet efficient tool for modeling outcomes in different treatment regimens in mice. We hope that this model has the potential for use in clinical practice in the development of patient-specific chemotherapy scheduling protocols based on observed treatment response.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Carcinoma de Ehrlich/tratamento farmacológico , Administração Metronômica , Animais , Carcinoma de Ehrlich/patologia , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacocinética , Feminino , Dose Máxima Tolerável , Camundongos , Modelos Teóricos , Reprodutibilidade dos Testes , Gencitabina
4.
J Environ Health Sci Eng ; 17(2): 889-906, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32030161

RESUMO

In this study, it has been attempted to quantify model climate change effects of the coming decades on energy demand and carbon dioxide emissions of a dominant building brigade under hot and humid climates on the southern coast of Iran, based on three stations of Bushehr, Bandar Abbas and Chabahar. In this research, the Meteonorm and DesignBuilder software have been used for climate and thermal simulation of building. One of the results of this study is the increase in temperature and relative humidity for the coming decades for all three study stations. The findings of this study showed that the average annual temperature for the 2060s compared to the present decade, will increase by 2.82 °C for Bandar Abbas, by 2.79 °C for Bushehr and for Chabahar it will reach 2.14 °C. This increase in temperature has led to an increase in discomfort warmer days and a decrease in discomfort cold days. But given the climatic type of the area, a decrease in the heating energy demand for the coming decades will not have a significant effect on the pattern of energy consumption inside buildings. Because for two stations of Bandar Abbas and Chabahar, more than 95% of the energy demand for the 2060s is for cooling energy demand, which is about 80% of energy for Bushehr. In total, due to the increased demand for cooling energy in the coming decades, this will further increase carbon dioxide emissions, which is higher in Chabahar than in other study stations.

5.
Photodiagnosis Photodyn Ther ; 13: 101-107, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26790610

RESUMO

One of the factors limiting photodynamic therapy (PDT) is hypoxia in tumor cells during photodynamic action. PDT with pulse mode irradiation and appropriate irradiation parameters could be more effective in the singlet oxygen generation and tissue re-oxygenation than continuous wave (CW) mode. We theoretically demonstrate differences between the cumulative singlet oxygen concentration in PDT using pulse mode and CW mode of laser irradiation. In vitro experimental results show that photodynamic treatment with pulse mode irradiation has similar cytotoxicity to CW mode and induces mainly cell apoptosis, whereas CW mode induces necrotic cell death. We assume that the cumulative singlet oxygen concentration and the temporal distribution of singlet oxygen are important in photodynamic cytotoxicity and apoptosis initiation. We expect our research may improve irradiation protocols and photodynamic therapy efficiency.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Oxigênio Singlete/química , Simulação por Computador , Relação Dose-Resposta à Radiação , Combinação de Medicamentos , Humanos , Células K562 , Terapia a Laser/métodos , Lasers de Estado Sólido , Modelos Químicos , Fármacos Fotossensibilizantes/efeitos da radiação , Porfirinas/química , Porfirinas/efeitos da radiação , Doses de Radiação , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...